

iit Ittituto Italiano di tecnologia

Institut national de la santé et de la recherche médicale istituto italiano di tecnologia

Learning Through Coaching in Cooperative Side-by-Side Human-Humanoid Interaction

Peter Ford Dominey(1), Giorgio Metta(2), Francesco Nori(2), Lorenzo Natale(2)

1CNRS & INSERM U846, France, <u>peter.dominey@inserm.fr</u> 2Italian Institute of Technology, Italy , <u>Giorgio.metta@iit.it;</u> <u>francesco.nori@iit.it;</u> <u>lorenzo.natale@iit.it</u>

Objectives:

Humanoid robot 'apprentice'

Establish base-line tasks(s)/scenario(s)

□ Set of sensory-motor primitives

Mechanism for composing new behavior from these primitives

Demonstrate generalization to a set of tasks

Side by side interaction

Spoken language

□ Vision

□ Automatic learning and anticipation

Representation Shared intentional plans

Demonstrate these capabilities on standard humandoid platforms

iCub – FP6 IST RobotCub IIT Genoa

HRP-2 n°14 AIST-CNRS JRL LAAS Toulouse

The Robot Apprentice

- The robot works with the human to assemble the table
- And learns about the shared task
- To progressively acquire skill
- The robot should have:
 - Some Basic Skills
 - Ability to Learn from the Expert
 - Ability to use language to guide action, including learning
 - Notion of Shared Plans

Table-Building Scenario

Spoken Language Programming: Composing primitives into behaviors

Table 2. Learning and Control Commands

Commands	Correspondence
Learn	Begin encoding subsequent commands
OK	Store encoded command sequence in
	macro
Macro	Execute the stored macro
Wait	Interrupt command execution until a
	spoken "continue" command is issued
Continue	Terminate the "wait" pause and resume
	execution.

Part of Joint Robotics Laboratory project, CNRS LAAS Toulouse,

Dominey, Mallet, Yoshida (2007) IEEE Int. Conf. Robotics & Automation 2007

Table 1. Action Commands

Motor Command	Resulting Actions
Prepare	Move both arms to neutral position,
	rotate chest to center, elevate left
	arm, avoiding contact with the work
	surface (5 DOF)
OpenLeft	Open left hand (1 DOF)
CloseLeft	Close left hand (1 DOF)
Give it to me	Rotate hip to pass the object in left
	hand to user on the right (1 DOF)
Hold	Center hip, raise right arm preparing
	to hold table top (5 DOF)
Right open	Open right hand (1 DOF)
Right close	Close right hand (1 DOF)

Table Assembly and Disassembly

Teaching a Generalized Sensorimotor Behavior

- Give me the *green* leg
 - Take the green leg
 - □ Turn right
 - Open right hand
- Training with one example
 - Green is passed as an argument to TAKE
 - Learned procedure generalizes over (yellow, rose, green, orange)
 - Powerful learning capability with procedures that take variables
- Embodiment of lexical categories
 - □ Verbs procedures
 - □ Nouns arguments
- Requires more sophisticated skills
 - Vision
 - Inverse kinematics

Part of Joint Robotics Laboratory project, CNRS LAAS Toulouse, **Dominey, Mallet, Yoshida (2007) IEEE Int. Conf. On Humanoid Robotics**

Performance Evaluation

*and improved motion trajectories

Automatic Learning, and Anticipation

 On-line Learning of complex cooperative behavior via continuous interaction history monitoring
Yeilds Aniticpation for
Speech recognition
Action propositions
Action Inititiatve taking

Automatic Learning, and Anticipation

- If current subsequence is in interaction history
 - L1 anticipate speech
 - L2 propose next action
 - □ L3 take initiative
- Else get next command
- Execute
- Update interaction history

Table 1. iCub Specific Action Commands

Motor Command	Resulting Actions
Reach	Position left hand next to closest
	table leg
Grasp	Close left hand
Lift	Raise left hand
Pass	Turn trunk and left shoulder
	towards user
Open	Open left hand
Hold	Bimanually coordinated holding
Release	Place both hands in upward safe
	position
Wait	Suspend until OK signal

Progressive effects of Learning

Shared Intentions & Situated Simulations

Tomasello et al. Behavioral and Brain Sciences, 2005

Implementing Shared Plans

Putting it all together:

Primitives (perceptual and motor)

- □ 'Innate' set
- □ Ability to create new primitives
- Composition
 - □ On-line sequence detection
 - Explicit 'spoken language programming'
 - □ Observation
 - Anticipation
 - Naming of new sequences increasing the behavior repertoire

Acknowledgements

- Funding
 - □ euCognition (ICT FP6)
 - □ CHRIS (ICT FP7)
 - French ANR Amorces
- Collaborators
 - Anthony Mallet
 - Eiichi Yoshida
 - Giorgio Metta
 - Giulio Sandini
 - Francesco Nori
 - Lorenzo Natale

- Students
 - Jean-David Boucher
 - Stephane Lallee
 - 🗆 Zhenli Lu
- Research Organizations

Situated Simulation Architecture

